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What is our current reach?What is our current reach?
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Extending Our ReachExtending Our Reach

• Motivation: making the best use of limited bandwidth
to achieve science goals

• This talk:
1. Feature extraction
2. ROI compression
3. Summarization
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1. Feature Extraction1. Feature Extraction

• Local features
• Items of interest (e.g., find all rocks)

• Items that stand out (e.g., find unusual rocks)

• Items that change (e.g., find new rocks)

• Regional characterization
• Learn a regional model

• Detect deviations from the model
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April 12, 2002

Local Feature: Dark Slope StreaksLocal Feature: Dark Slope Streaks

!!!!!

Appear, but do not disappear, from Martian slopes

June 12, 2000

Latitude: 26.8 North; Longitude: 229 East
(Just north of Olympus Mons)

MGS MOC

700 m
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1. Detect all streaks; transmit all such images

2. Maintain and transmit regional counts

3. Maintain a catalog of (x,y) or (lat,lon) streak coordinates

4. Maintain streak properties (e.g., darkness, thickness,
length, orientation)

Dark Slope StreaksDark Slope Streaks

• Goal: detect streaks onboard and send images of
any changes back to Earth

increasing sophistication

Norbert Schorghofer / Caltech
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Regional ChangeRegional Change

• Tracking the seasonal evolution of Martian polar caps

• Current models (Titus and Kieffer, 02)
• Derived from two Mars years of TES data

• CROCUS map: time when CO2 sublimates (spring)

• Frost map: time when CO2 condenses (fall)

• Goal: identify edge of polar cap; if it deviates from the
current model, transmit the image
• Identifies exceptions to our current understanding

• Can lead to model refinements

• Use THEMIS temperature observations
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THEMISTHEMIS

• Visible and infra-red imager on Mars Odyssey
• Infra-red: 10 bands (6-15 microns)
• Resolution: 100 m/pixel
• 93.1 degree (polar) orbit
• Period is just under two hours

• Goal: automatically detect edge of ice caps
• Apply a temperature threshold?!
• No contextual information

• No calibration

• Simple thresholding does not work
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15Orbits 4319-4330, 4391-4393
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2. Priority-based Compression2. Priority-based Compression

• Lossless compression: no decrease in image quality

• Lossy compression: sacrifice some detail
• Requires a method for determining which details to discard

• MER: uses ICER
• Progressive wavelet-based compression

• Spatially confines impact of transmission loss of data

• Future missions: ROI-ICER (Region Of Interest)
• Indicate which regions should receive more bits

• Key: specify relative priorities of image regions !
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Case Study: Rover Image CompressionCase Study: Rover Image Compression

Original image

Priority map

 (black = low; white = high)
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Rover Image Compression ResultsRover Image Compression Results

• Tested on 25 rover navigation images (185 rocks)

• High-priority regions = rocks

• Evaluated the fidelity of the transmitted image with
respect to science goal
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3. Data Summarization3. Data Summarization

• Idea: cannot afford to send the entire image, but want
to capture the essential science information

• Solution: generate high-level summaries of patterns
in the image data

• Method: Clustering
• Identifies major components in the image

• E.g., Earth image: land, water, vegetation, buildings, …

• Specifies which pixels correspond to each component
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ClusteringClustering

• Automatically group items into k clusters, by similarity

1. Assign items to k clusters (randomly)

2. Compute the average (mean) for each cluster

Means:Means:Means:

1. Assign items to k clusters: minimize variance

2. Compute the average (mean) for each cluster

Summary:

12     , 12     , 8
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Hyperion: Hyperspectral ImagerHyperion: Hyperspectral Imager

Rillito Creek,
Tucson, AZ

Dimensions:
• 256x1000 pixels
• 220 bands
• 2 bytes per pixel

File size: 107 MB
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Clustering Hyperion data with k=8Clustering Hyperion data with k=8

Clustering
  result:

Pixels are
color-coded
by cluster

Rillito Creek,
Tucson, AZ
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Hyperion SummaryHyperion Summary

Mean cluster spectra

Clustering means and variance: 14 KB
Dimensions: 8 clusters x 220 values, 
4 bytes/value

Clustering result: 250 KB
Dimensions: 256x1000
1 byte/pixel (8 clusters) 

Vegetation

264 KB vs. 107 MB = 415:1 compression 
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SummarySummary
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• Goal: optimize use of limited bandwidth to achieve
science goals



Questions?Questions?

Contact: Kiri Wagstaff

kiri.wagstaff@jpl.nasa.gov

x3-6393

Thank you to:

• The OASIS team: Bob Anderson, Ben Bornstein, Andres
Castano, Becky Castano, Tara Estlin, Forest Fisher, Dan
Gaines, Dominic Mazzoni, and Michele Judd

• Polar ice: Oded Aharonson and Norbert Schorghofer
(Caltech), Shane Byrne (MIT), Tim Titus (USGS)

• ICER: Sam Dolinar, Aaron Kiely, Matt Klimesh, Ryan Mukai

• THEMIS: Josh Bandfield and Noel Gorelick (ASU)


